
General Description

This PAN3018ER N-Channel enhancement mode power field effect transistor is the high density trench technology and this advanced technology can provide excellent Rds(On) performance and efficiency for power switching and load switching application., this device also comply with the RoHS and Green Product requirement with full function reliability approved.

Feature

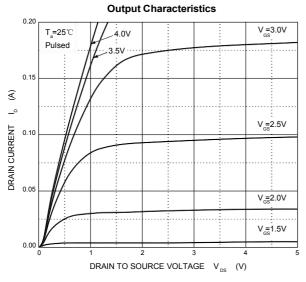
- Fast switching speed
- Low voltage drive makes this device ideal for portable equipment
- ●ESD Protection Diode design-in
- ●SOT-323 package design

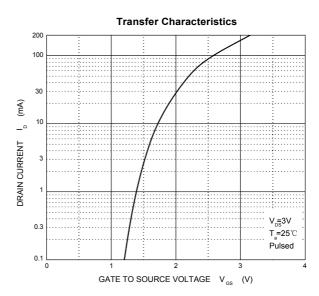
Application

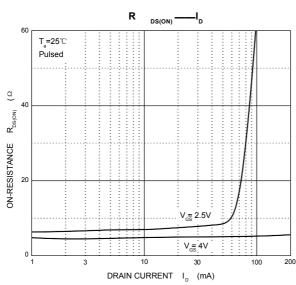
- Drivers: Relays, Solenoids, Lamps, Hammers, Display, Memories, Transistors, etc.
- High saturation current capability. Direct Logic-Level Interface: TTL/CMOS
- Battery Operated Systems
- ●Solid-State Relays

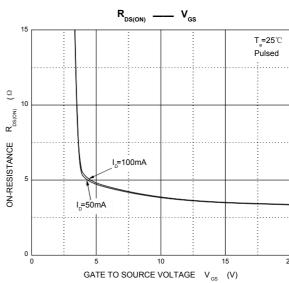
> Absolute Maximum Ratings

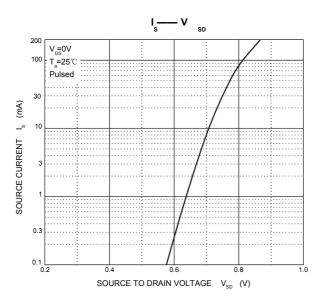
Symbol	Parameter		Units
VDS	Drain-Source voltage	30	V
Vgss	Gate-Source Voltage	±20	V
lD	Continuous Drain Current	0.1	А
PD	Power Dissipation	0.2	W
TJ	Junction Temperature	150	°C
Tstg	Storage Temperature	-55-150	°C
Reja	Thermal Resistance from Junction to Ambient	625	°C W

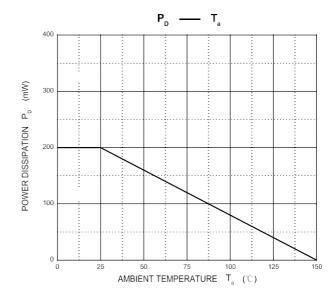


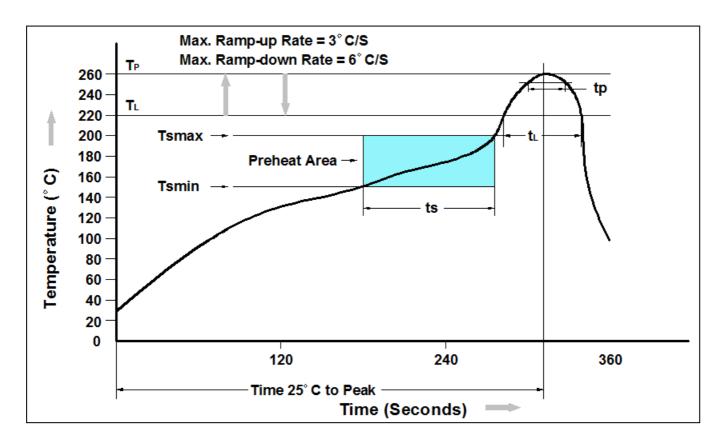

Electrical Characteristics (TA=25°C Unless otherwise noted)


Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Off Characteristics						
Drain-Source Breakdown Voltage	V(BR)DSS	Vgs = 0V, ID = 10μA	30			V
Zero Gate Voltage Drain Current	IDSS	Vps = 30V, Vgs = 0V			0.2	μΑ
Gate –Source leakage current	Igss	Vgs =±20V, Vps = 0V			±10	uA
Gate Threshold Voltage	VGS(th)	Vps = 3V, Ip =100µA	0.8		1.5	V
Drain-Source On-Resistance	Descri	Vgs = 4V, Ip =10mA			8	Ω
Diditi-Source Off-Nesistance	NDS(on)	RDS(on) VGS = 2.5V, ID = 1 mA			13	Ω
Forward Transconductance	g FS	V _{DS} =3V, I _D = 10mA	20			mS
Dynamic Characteristics*						
Input Capacitance	Ciss			13		pF
Output Capacitance	Coss	V _{DS} =5V,V _{GS} =0V,f =1MHz		9		pF
Reverse Transfer Capacitance	Crss			4		pF
Switching Characteristics*	•		•	•		
Turn-On Delay Time	td(on)			15		ns
Rise Time	tr	Vgs=5V, Vdd=5V,		35		ns
Turn-Off Delay Time	td(off)	ID=10mA, Rg=10Ω, RL=500Ω		80		ns
Fall Time	tf			80		ns
•	` ′	id=10mA, κg=10Ω, κι=500Ω				

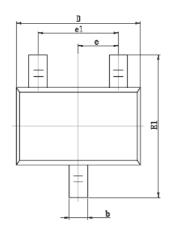


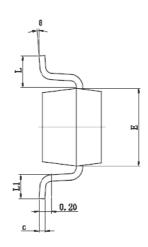

> Typical Characteristics

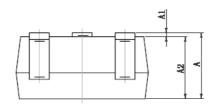




Recommand IR Reflow Soldering Thermal Profile


Profile Feature	Pb-Free Assembly Profile	
Temperature Min. (Tsmin)	150°C	
Temperature Max. (Tsmax)	200°C	
Time (ts) from (Tsmin to Tsmax)	60-120 seconds	
Average Ramp-up Rate (tL to tP)	3°C/second max.	
Liquidous Temperature (TL)	217°C	
Time (tL) Maintained Above (TL)	60 – 150 seconds	
Peak Temperature	260°C +0°C / -5°C	
Time (tP) within 5°C of actual Peak Temperature	30 seconds	
Ramp-down Rate (TP to TL)	6°C/second max	
Time 25°C to Peak Temperature	8 minutes max.	


Ordering Information


Part Number	Description	Quantity
PAN3018ER	SOT-323 Reel	3000 pcs

Package Information (SOT-323)

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.200	0.400	0.008	0.016	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650 TYP		0.026	TYP	
e1	1.200	1.400	0.047	0.055	
L	0.525 REF		0.021	REF	
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

DISCLAIMER

- The information in this document and any product described herein are subject to change without notice and should not be construed as a commitment by Paceleader, Paceleader reserve the right to make changes to the information in this document.
- Though Paceleader make effort to improve product quality and reliability, Product can malfunction and fail due to their inherent electrical sensitivity and vulnerability to physical stress, it is the responsibility of the customer, when utilizing Paceleader products, to comply with the standards of safety in making a safe design for entire system and to avoid situation in which a malfunction or failure., In developing a new designs, customer should ensure that the device which shown in this documents are used within specified operating ranges.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Paceleader for any infringements of patents or other rights of the third parties which may result from its use.