
General Description

This PAN27T30EV Dual N-Channel enhancement mode power field effect transistor is the high density trench technology and this advanced technology can provide excellent Rds(On) performance and efficiency for power switching and load switching application., this device also comply with the RoHS and Green Product requirement with full function reliability approved.

Feature

- Super Low Gate Charge
- ●100% EAS Guaranteed
- •Green Device Available
- ●Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

> DFN3X3-NEP

> Application

- DC/DC Primary Side Switch
- Industrial Synchronous
- Rectification Load Switch
- ●ESD Protection

> Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	Vgs	±12	V
Continuous Drain Current ₁	Id@Ta=25°C	7	А
Continuous Drain Current ₁	Id@Ta=70°C	5.8	А
Pulsed Drain Current2	Ідм	43	А
Total Power Dissipation₃	PD@TA=25°C	1.47	W
Storage Temperature Range	Тѕтс	-55 to 150	°C
Operating Junction Temperature Range	TJ	-55 to 150	°C
Thermal Resistance Junction-Ambient 1	Reja	85	°C/W

Electrical Characteristics (T_J=25°C Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BVDSS	Vgs=0V, Id=250uA	20			V
BV _{DSS} Temperature Coefficient	Δ BVDSS/Δ TJ	Reference to 25°C , ID=1mA		0.014		V/°C
Static Drain-Source On-Resistance2		Vgs=4.5V, ID=3A		14.5	17	mΩ
	D	Vgs=4.0V, ID=3A		15	18.5	mΩ
	RDS(ON)	Vgs=3.1V , Id=3A		18.5	24.5	mΩ
		Vgs=2.5V , ID=3A		22	27	mΩ
Gate Threshold Voltage	VGS(th)	V V I 050	0.5		1.2	V
V _{GS(th)} Temperature Coefficient	Δ VGS(th)	Vgs=Vbs , Ib =250uA		-2.09		mV/°C
Drain-Source Leakage Current	IDSS	VDS=16V, VGS=0V, TJ=25°C			25	uA
Gate-Source Leakage Current	Igss	Vgs=±12V, Vps=0V			±10	uA
Gate Resistance	Rg	VDS=0V , VGS=0V , f=1MHz		1.83		Ω
Total Gate Charge (4.5V)	Q _g			9.86		
Gate-Source Charge	Qgs	Vps=16V , Vgs=4.5V , Ip=3A		1.41		nC
Gate-Drain Charge	Qgd			2.48		
Turn-On Delay Time	Td(on)			7		
Rise Time	Tr	Vdd=10V, Vgs=4.5V, Rg=3.3Ω,		36		
Turn-Off Delay Time	Td(off)	ID=3A		46.5		ns
Fall Time	Tf			15		1
Input Capacitance	Ciss			735		
Output Capacitance	Coss	Vps=15V , Vgs=0V , F=1MHz		83		pF
Reverse Transfer Capacitance	Crss			81		

Diode Characteristics

Parameter	Symbol	Conditions	Max.	Unit
Continuous Source Current _{1,6}	Is	Vg=Vp=0V, Force Current	7	Α
Diode Forward Voltage2	VsD	Vgs=0V , Is=7A , TJ=25°C	1.2	V

Note

^{1.}Pulse width limited by maximum junction temperature.

^{2.}The data tested by pulsed , pulse width ≦ 300us , duty cycle ≦ 2%

^{3.}Ensure that the channel temperature does not exceed 150°C.

^{4.}The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

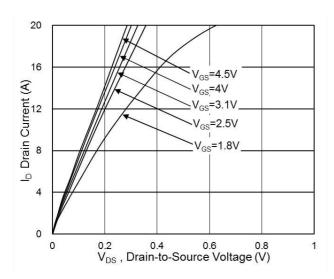


Fig.1 Typical Output Characteristics

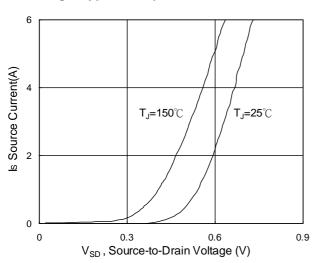


Fig.3 Forward Characteristics of Reverse

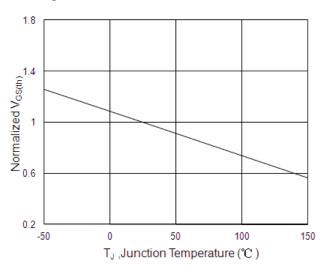


Fig.5 Normalized V_{GS(th)} vs. T_J

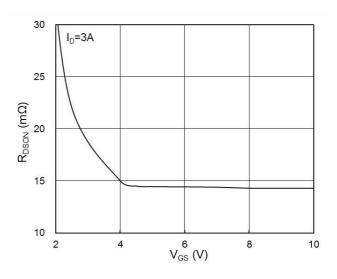


Fig.2 On-Resistance vs. Gate-Source Voltage

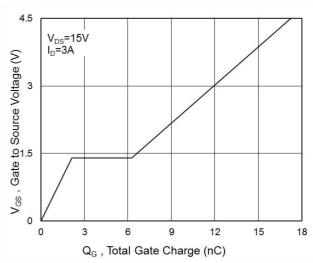


Fig.4 Gate-Charge Characteristics

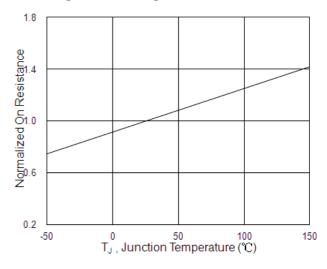
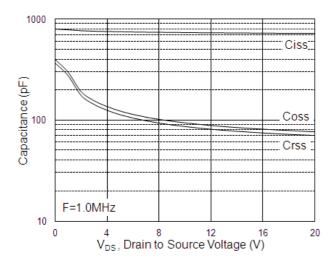



Fig.6 Normalized R_{DSON} vs. T_J

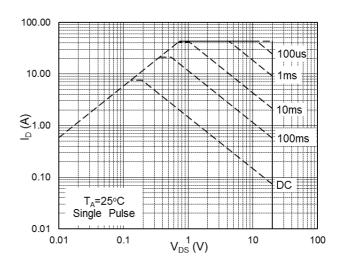


Fig.7 Capacitance

Fig.8 Safe Operating Area

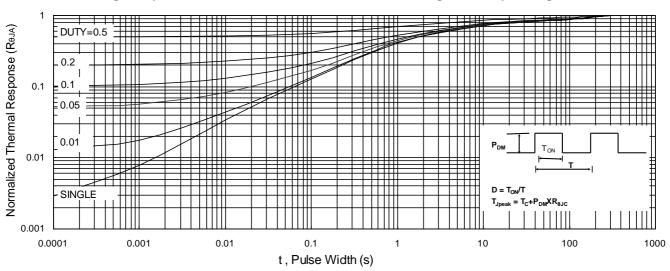


Fig.9 Normalized Maximum Transient Thermal Impedance

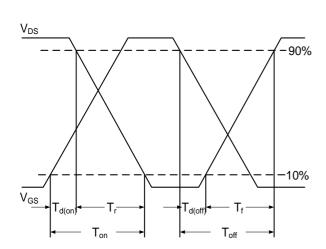


Fig.10 Switching Time Waveform

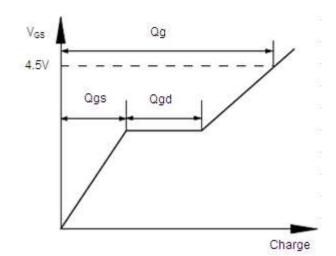
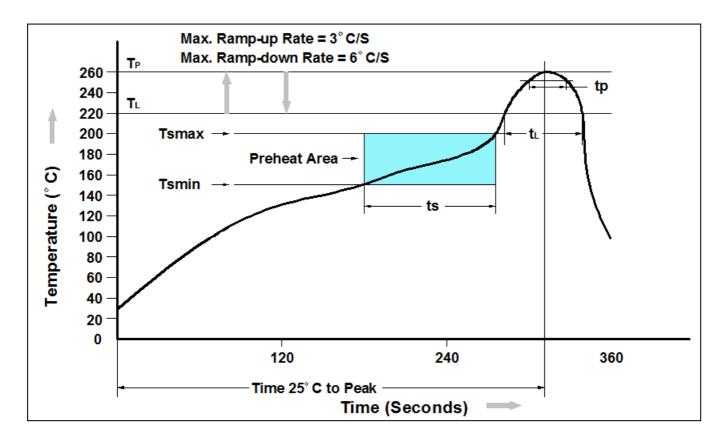
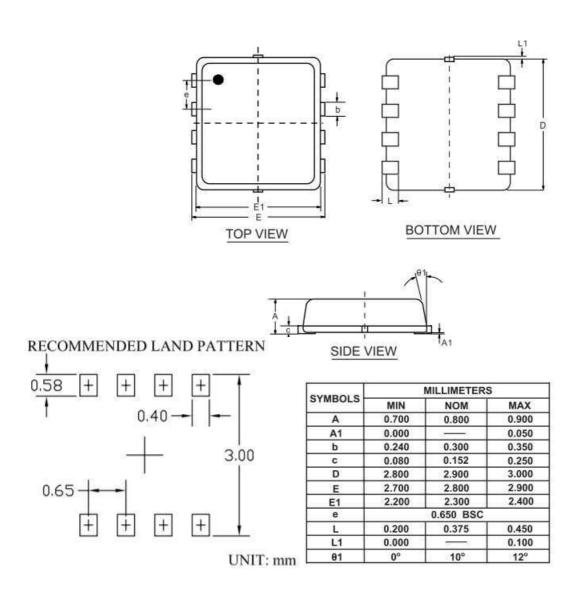



Fig.11 Gate Charge Waveform

Recommand IR Reflow Soldering Thermal Profile


Profile Feature	Pb-Free Assembly Profile	
Temperature Min. (Tsmin)	150°C	
Temperature Max. (Tsmax)	200°C	
Time (ts) from (Tsmin to Tsmax)	60-120 seconds	
Average Ramp-up Rate (tL to tP)	3°C/second max.	
Liquidous Temperature (TL)	217°C	
Time (tL) Maintained Above (TL)	60 – 150 seconds	
Peak Temperature	260°C +0°C / -5°C	
Time (tP) within 5°C of actual Peak Temperature	30 seconds	
Ramp-down Rate (TP to TL)	6°C/second max	
Time 25°C to Peak Temperature	8 minutes max.	

Ordering Information

Part Number	Description	Quantity
PAN27T30EV	DFN3X3-NEP Reel	3000 pcs

Package Information (DFN3X3-NEP)

DISCLAIMER

- The information in this document and any product described herein are subject to change without notice and should not be construed as a commitment by Paceleader, Paceleader reserve the right to make changes to the information in this document.
- Though Paceleader make effort to improve product quality and reliability, Product can malfunction and fail due to their inherent electrical sensitivity and vulnerability to physical stress, it is the responsibility of the customer, when utilizing Paceleader products, to comply with the standards of safety in making a safe design for entire system and to avoid situation in which a malfunction or failure., In developing a new designs, customer should ensure that the device which shown in this documents are used within specified operating ranges.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Paceleader for any infringements of patents or other rights of the third parties which may result from its use.